Skip to main content

References

Below are alphabetically listed references organized by themes.

Missions

Entekhabi, D., E, Njoku, P. O’Neill, K. Kellogg, plus 19 others, “The Soil Moisture Active Passive (SMAP) Mission,” Proceedings of the IEEE, Vol. 98, No. 5, May, 2010.

Hou, A. Y., R. K. Kakar, S. Neeck, A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi, 2014 : The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701-722, doi:10.1175/BAMS-D-13-00164.1.

Kerr, Y. H. , Waldteufel, P., Wigneron, J., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M., Font, J., Reul, N., Gruhier, C., Juglea, S. E., Drinkwater, M. R., Hahne, A., Martín-Neira, M.,and Mecklenburg, S., “The SMOS mission: New tool for monitoring key elements of the global water cycle,” Proceedings of the IEEE, 98( 5), pp. 666- 687, 2010.

Njoku, E., and S. Chan, Soil Moisture from the Advanced Microwave Scanning Radiometer (AMSR) Instruments in Comprehensive Remote Sensing, Earth Systems and Environmental Sciences, vol. 4, pp.191-223, 2018. Elsevier. ISBN: 9780128032206. https://doi.org/10.1016/B978-0-12-409548-9.10356-2

Shibata, A., Imaoka, K., & Koike, T. (2003). AMSR/AMSR-E level 2 and 3 algorithm developments and data validation plans of NASDA. IEEE Transactions on Geoscience and Remote Sensing, 41, 195–203.

Soil Moisture

Bindlish, R., T. Jackson, M. Cosh, T. Zhao, and P. O’Neill, “Global Soil Moisture from the Aquarius Satellite: Description and Initial Assessment,” IEEE Geoscience and Remote Sensing Letters, 2014, doi 10.1109/LGRS.2014.2364151.

Chan, S., R. Bindlish, P. E. O'Neill, T. Jackson, E. G. Njoku, S. Dunbar, J. Chaubell, J. R. Piepmeier, S. Yueh, D. Entekhabi, A. Colliander, F. Chen, M. Cosh, T. Caldwell, J. Walker, A. Berg, H. McNairn, M. Thibeault, J. Martinez-Fernandez, F. Uldall, M. Seyfried, D. Bosch, P. Starks, C. Holifield -Collins, J. Prueger, R. Van der Velde, J. Asanuma, M. Palecki, E. E. Small, M. Zreda, J. Calvet, W. T. Crow, and Y. Kerr. 2018. Development and assessment of the SMAP enhanced passive soil moisture product, Remote Sensing of the Environment. 204. 931–941. https://doi.org/10.1016/j.rse.2017.08.025

Chan, S., R. Bindlish, P. E. O'Neill, E. G. Njoku, T. Jackson, A. Colliander, F. Chen, M. Burgin, S. Dunbar, J. R. Piepmeier, S. Yueh, D. Entekhabi, M. Cosh, T. Caldwell, J. Walker, A. Berg, T. Rowlandson, A. Pacheco, H. McNairn, M. Thibeault, J. Martinez-Fernandez, A. González-Zamora, D. Bosch, P. Starks, D. Goodrich, J. Prueger, M. Palecki, E. E. Small, M. Zreda, J. Calvet, W. T. Crow, and Y. Kerr. 2016. Assessment of the SMAP passive soil moisture product, IEEE Transactions on Geoscience and Remote Sensing. 54. 4994–5007. https://doi.org/10.1109/TGRS.2016.2561938

Chan, S., R. Bindlish, P. E. O'Neill, T. Jackson, E. G. Njoku, S. Dunbar, J. Chaubell, J. R. Piepmeier, S. Yueh, D. Entekhabi, A. Colliander, F. Chen, M. Cosh, T. Caldwell, J. Walker, A. Berg, H. McNairn, M. Thibeault, J. Martinez-Fernandez, F. Uldall, M. Seyfried, D. Bosch, P. Starks, C. Holifield -Collins, J. Prueger, R. Van der Velde, J. Asanuma, M. Palecki, E. E. Small, M. Zreda, J. Calvet, W. T. Crow, and Y. Kerr. 2018. Development and assessment of the SMAP enhanced passive soil moisture product, Remote Sensing of the Environment. 204. 931–941. https://doi.org/10.1016/j.rse.2017.08.025

Chan, S., R. Bindlish, P. E. O'Neill, E. G. Njoku, T. Jackson, A. Colliander, F. Chen, M. Burgin, S. Dunbar, J. R. Piepmeier, S. Yueh, D. Entekhabi, M. Cosh, T. Caldwell, J. Walker, A. Berg, T. Rowlandson, A. Pacheco, H. McNairn, M. Thibeault, J. Martinez-Fernandez, A. González-Zamora, D. Bosch, P. Starks, D. Goodrich, J. Prueger, M. Palecki, E. E. Small, M. Zreda, J. Calvet, W. T. Crow, and Y. Kerr. 2016. Assessment of the SMAP passive soil moisture product, IEEE Transactions on Geoscience and Remote Sensing. 54. 4994–5007. https://doi.org/10.1109/TGRS.2016.2561938

Chan, S, R. Hunt, R. Bindlish, E. Njoku, J. Kimball, and T. Jackson, “Ancillary Data Report for Vegetation Water Content,” SMAP Project Document # D-53061, JPL, July, 2011.

Jackson, T. J., “Measuring surface soil moisture using passive microwave remote sensing,” Hydrol. Process., vol. 7, pp. 139-152, 1993.

Jackson, T. J. and T. J. Schmugge, “Vegetation effects on the microwave emission from soils,” Rem. Sens. Environ., vol. 36, pp. 203-212, 1991.

Mo, T., B. J. Choudhury, T. J. Schmugge, J. R. Wang, and T. J. Jackson, “A model for microwave emission from vegetation-covered fields,” J. Geophys. Res., 87(13), pp. 11229-11237, 1982.

Mironov, V. L., L. G. Kosolapova, and S. V. Fomin, “Physically and mineralogically based spectroscopic dielectric model for moist soils,” IEEE Trans. Geosci. Remote Sens., 47(7), pp. 2059–2070, 2009.

O'Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, R. Bindlish, J. Chaubell, and A. Colliander. 2021. SMAP Enhanced L2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture, Version 5. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/LOT311EZHH8S. Jun 16, 2022.

O'Neill, P.E., et al. 2020. "SMAP Algorithm Theoretical Basis Document: Level 2 and 3 Soil Moisture (Passive) Products," Jet Propulsion Laboratory, California Institute of Technology, JPL D-66480. URL: https://smap.jpl.nasa.gov/system/internal_resources/details/original/484_L2_SM_P_ATBD_rev_F_final_Aug2020.pdf. Accessed: May 31, 2022.

Njoku, E. G. and J. A. Kong (1977): Theory for passive microwave remote sensing of near-surface soil moisture, J. Geophys. Res., 82, 3108-3118.

Njoku, E. and L. Li, “Retrieval of Land Surface Parameters Using Passive Microwave Measurements at 6-18 GHz,” IEEE Trans. Geosci. Rem. Sens., vol. 37, pp. 79–93, 1999.

Effective Soil Temperature

Burke, W. J., Schmugge, T., and Paris, J. F. (1979), Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations, J. Geophys. Res., 84( C1), 287– 294, doi:10.1029/JC084iC01p00287.

Choudhury, B., Schmugge, T., and Mo, T., “A Parameterization of Effective Soil Temperature for Microwave Emission,” J. Geophys. Res., 87: 1301-1304, 1982.

Lv, S., Wen, J., Zeng, Y., Tian, H., and Su, Z. “An improved two-layer algorithm for estimating effective soil temperature in microwave radiometry using in situ temperature and soil moisture measurements.” Remote Sensing of Environment 152 (2014): 356-363.

Lv, S., Zeng, Y., J. Wen and Su, Z. “A reappraisal of global soil effective temperature schemes.” Remote Sensing of Environment 183 (2016): 144-153.

Lv, S., Zeng, Y., Su, Z., and Wen, J. (2019). A Closed-Form Expression of Soil Temperature Sensing Depth at L-Band. IEEE Transactions on Geoscience and Remote Sensing, 57, 4889-4897.

Njoku, E. G., and Kong, J.-A. (1977), Theory for passive microwave remote sensing of near-surface soil moisture, J. Geophys. Res., 82( 20), 3108– 3118, doi:10.1029/JB082i020p03108.

Tsang, et al., Scattering of Electromagnetic Waves: Theories and Applications, Chapter, 5, Vol. 1, John Wiley & Sons, Inc., 2000.

Schmugge, T. J., and Choudhury, B. J. (1981), A comparison of radiative transfer models for predicting the microwave emission from soils, Radio Sci., 16( 5), 927– 938, doi:10.1029/RS016i005p00927.

Wilheit, T.. “Radiative Transfer in a Plane Stratified Dielectric.” IEEE Transactions on Geoscience Electronics 16 (1978): 138-143.

Validation

Bindlish, R., Jackson, T. J., Gasiewski, A., et al. (2008). Aircraft based soil moisture retrievals under mixed vegetation and topographic conditions. Remote Sensing of Environment, 112, 375–390.

Chen, F., Crow, W. T., Colliander, A., Cosh, M., Jackson, T. J., Bindlish, R., Reichle, R., Chan, S. K., Bosch, D. D., Starks, P. S., Goodrich, D. C., and Seyfried, M. S. Application of triple collocation in ground-based validation of Soil Moisture Active Passive (SMAP) Level 2 data products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10: 489-502. 2017.

Colliander, A., Jackson, T.J., Chan, S., .O'Neill, P.E., Bindlish, R., Cosh, M.H., Berg, A., Rowlandson, T., Bosch, D., Caldwell, Walker, J.P., Berg, A., McNairn, H., Thibeault, M., Martínez-Fernández, J., Jensen, K.H., Asanuma, J., Seyfried, M., Bosch, D.D., Starks, P., Holifield Collins, C., Prueger, J.H., Su, Z., Lopez-Baeza, E., and Yueh, S.H. An assessment of the differences between spatial resolution and grid size for the SMAP enhanced soil moisture product over homogeneous sites. Remote Sensing of Environment, 207: 65-70. 2018.

Cosh, M. H., Jackson, T. J., Bindlish, R., & Prueger, J. H. (2004). Watershed scale temporal and spatial stability of soil moisture and its role in validating satellite estimates. Remote Sensing of Environment, 92, 427–435.

Cosh, M. H., Jackson, T. J., Starks, P., & Heathman, G. (2006). Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation. Journal of Hydrology, 323, 168–177.

Cosh, M. H., Jackson, T. J., Moran, S., & Bindlish, R. (2008). Temporal persistence and stability of surface soil moisture in a semi-arid watershed. Remote Sensing of Environment, 112, 304–313.

Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV): http://calvalportal.ceos.org/CalValPortal/welcome.do and WWW: Land Products Subgroup of Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV): http://lpvs.gsfc.nasa.gov.

Leroux, D. J., Kerr, Y. H., Al Bitar, A., et al. (2014). Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in US. IEEE Transactions on Geoscience and Remote Sensing, 52, 1562–1571.

O’Neill, P., S. Chan, R. Bindlish, M. Chaubell, A. Colliander, F. Chen, S. Dunbar, T. Jackson, J. Peng, M. Mousavi, M. Cosh, T. Bongiovanni, J. Walker, X. Wu, A. Berg, H. McNairn, M. Thibeault, J. Martínez-Fernández, Á. González-Zamora, E. Lopez-Baeza, K. Jensen, M. Seyfried, D. Bosch, P. Starks, C. Holifield Collins, J. Prueger, Z. Su, R. van der Velde, J. Asanuma, M. Palecki, E. Small, M. Zreda, J. Calvet, W. Crow, Y. Kerr, S. Yueh, and D. Entekhabi, October 12, 2021. Calibration and Validation for the L2/3_SM_P Version 8 and L2/3_SM_P_E Version 5 Data Products, SMAP Project, JPL D-56297, Jet Propulsion Laboratory, Pasadena, CA.

Intercalibration

Berg, W., S. Bilanow, R. Chen, S. Datta, D. Draper, H. Ebrahimi, S. Farrar, W. Jones, R. Kroodsma, D. McKague, V. Payne, J. Wang, T. Wilheit, and J. Yang. 2016. “Intercalibration of the GPM Microwave Radiometer Constellation,” J. Atmos. Oceanic Technol., 33, pp. 2639–2654, doi: 10.1175/JTECH-D-16-0100.1.

Bindlish, R., T. J. Jackson, J. R. Piepmeier, S. Yueh and Y. Kerr. 2016. “Intercomparison of SMAP, SMOS and Aquarius L-band brightness temperature observations,” 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, pp. 2043–2046. doi: 10.1109/IGARSS.2016.7729527

Biswas, S. K., S. Farrar, K. Gopalan, A. Santos-Garcia, W. L. Jones and S. Bilanow. 2013. “Intercalibration of Microwave Radiometer Brightness Temperatures for the Global Precipitation Measurement Mission,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 51, no. 3, pp. 1465–1477. doi: 10.1109/TGRS.2012.2217148

EASE Grid Projection

Brodzik, M. J. and K. W. Knowles. 2002. “Chapter 5: EASE-Grid: A Versatile Set of Equal-Area Projections and Grids.” in Michael F.Goodchild (Ed.) Discrete Global Grids: A Web Book. Santa Barbara, California USA: National Center for Geographic Information & Analysis. https://escholarship.org/uc/item/9492q6sm.

Brodzik, M. J., B. Billingsley, T. Haran, B. Raup, M. H. Savoie. 2012. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets. ISPRS International Journal of Geo-Information, 1(1):32-45, doi:10.3390/ijgi1010032. http://www.mdpi.com/2220-9964/1/1/32.

Brodzik, M. J., B. Billingsley, T. Haran, B. Raup, M. H. Savoie. 2014. Correction: Brodzik, M. J. et al. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets. ISPRS International Journal of Geo-Information 2012, 1, 32-45. ISPRS International Journal of Geo-Information, 3(3):1154-1156, doi:10.3390/ijgi3031154. http://www.mdpi.com/2220-9964/3/3/1154

Knowles, K. W. 1993. A Mapping and Gridding Primer: Points, Pixels, Grids, and Cells. Unpublished report to the National Snow and Ice Data Center, Boulder, Colorado USA.

Wang, Z., A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," in IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, April 2004, doi:10.1109/TIP.2003.819861.

Ancillary Data

Chan, S, R. Hunt, R. Bindlish, E. Njoku, J. Kimball, and T. Jackson, “Ancillary Data Report for Vegetation Water Content,” SMAP Project Document # D-53061, JPL, July, 2011.

Didan, K.. MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V061. 2021, distributed by NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD13A2.061. Accessed 2022-06-16.

Friedl, M., D. Sulla-Menashe. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. 2019, distributed by NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD12Q1.006. Accessed 2022-06-16.erature Data Sets for Use in Passive Remote Sensing of Soil Moisture," Remote Sens. 13, no. 10: 1872., 2021. https://doi.org/10.3390/rs13101872

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2018): ERA5 hourly data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 16-Jun-2022), 10.24381/cds.adbb2d47

Hengl, T., J. de Jesus, G. Heuvelink, M. Gonzalez, M. Kilibarda, A. Blagotić, W. Shangguan, M.Wright, X. Geng, B. Bauer-Marschallinger, and M. Guevara, SoilGrids250m: Global gridded soil information based on machine learning, PLoS one, 12(2), 2017, p.e0169748. https://doi.org/10.1371/journal.pone.0169748.

Jackson, T., R. Bindlish, and T. Zhao, “Justification Memo for Vegetation Index Climatology,” SMAP Science Documents, JPL, February, 2011.

Muñoz S., J., (2019): ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 16-Jun-2022), 10.24381/cds.e2161bac

Muñoz S., J., (2021): ERA5-Land hourly data from 1950 to 1980. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 16-Jun-2022), 10.24381/cds.e2161bac

Zhang, R. Chan, S., Bindlish, R., Lakshmi, V. "Evaluation of Global Surface Water Temperature Data Sets for Use in Passive Remote Sensing of Soil Moisture," Remote Sens. 13, no. 10: 1872. https://doi.org/10.3390/rs13101872