Land Surface Heterogeneity and High-resolution Retrievals of L-band VOD and Soil Permittivity over the Arctic Boreal Forest and Permafrost

Divya Kumawat, Lun Gao Ardeshir Ebtehaj

Mike Schwank, JP Wigneron, and Xiaojun Li

Saint Anthony Falls Laboratory Department of Civil, Environmental and Geo- Engineering University of Minnesota October, 2023

Current Research

Future Research

Outline

Introduction

Current Research

Future Research

Current Research

Future Research 000

High-resolution SMAP Retrievals

A physical or a data-driven problem?

 $SM = f(\mathbf{x})$

Abbaszadeh et al., 2019, Downscaling SMAP ..., https://doi.org/10.1029/2018WR023354.

Previous	Research
00000	

Constrained Multi-Channel Algorithm (CMCA)

Accounting for slow changes of VOD in time

$$\boldsymbol{\psi}_t^* = \operatorname*{argmin}_{\boldsymbol{\psi}_t} \sum_{k=1}^{K} \sum_{t=0}^{T} \| \mathbf{E}_{kt}^{-1/2} [\mathbf{e}_{kt}^p - f_{\tau-\omega}(\boldsymbol{\psi}_t)] \|_2^2 + S(\boldsymbol{\psi}_t) \text{ subject to } \boldsymbol{\psi}_t' \preceq \boldsymbol{\psi}_t \preceq \boldsymbol{\psi}_t'$$

$$S(\boldsymbol{\psi}_t) = \lambda_0 \| \theta_t^p \|_2^2 + \sum_{i=1}^n \lambda_i \| \mathbf{D}_i \tau_t \|_2^2$$

Porosity at 1 km (Miller and White, 1998)

Gao L., M. Sadeghi, A. Ebtehaj (2020), https://doi.org/10.1016/j.rse.2020.111662

Previous	Research
00000	

Constrained Multi-Channel Algorithm (CMCA)

Accounting for slow changes of VOD in time

$$\psi_t^* = \underset{\psi_t}{\operatorname{argmin}} \sum_{k=1}^{K} \sum_{t=0}^{T} \|\mathbf{E}_{kt}^{-1/2} [\mathbf{e}_{kt}^{\rho} - f_{\tau-\omega}(\psi_t)]\|_2^2 + S(\psi_t) \text{ subject to } \psi_t^{\prime} \leq \psi_t \leq \psi_t^{\prime}$$

$$S(\boldsymbol{\psi}_t) = \lambda_0 \| \theta_t^p \|_2^2 + \sum_{i=1}^n \lambda_i \| \mathbf{D}_i \tau_t \|_2^2$$

Clay fraction at 1 km (Miller and White, 1998)

Previous	Research
00000	

Constrained Multi-Channel Algorithm (CMCA)

Accounting for slow changes of VOD in time

$$\boldsymbol{\psi}_t^* = \operatorname*{argmin}_{\boldsymbol{\psi}_t} \sum_{k=1}^{\mathcal{K}} \sum_{t=0}^{\mathcal{T}} \|\mathbf{E}_{kt}^{-1/2} [\mathbf{e}_{kt}^p - f_{\tau-\omega}(\boldsymbol{\psi}_t)]\|_2^2 + S(\boldsymbol{\psi}_t) \text{ subject to } \boldsymbol{\psi}_t^\prime \leq \boldsymbol{\psi}_t \leq \boldsymbol{\psi}_t^\prime$$

$$S(\boldsymbol{\psi}_t) = \lambda_0 \|\boldsymbol{\theta}_t^p\|_2^2 + \sum_{i=1}^n \lambda_i \|\mathbf{D}_i \tau_t\|_2^2$$

NLDAS 2006–2015 (12.5 km) and MODIS VOD data from 2000–2016 (1 km)

Previous	Research
00000	

SMAP Retrievals

SM snapshot retrievals – Feb 15, 2016

Previous	Research
00000	

Future Research

SMAP Retrievals

Previous	Research
00000	

Future Research

SMAP Retrievals

Soil Moisture below Snowpack

Soil-Snow-Canopy Radiative Transfer Model in L-band

$$Tb^{p} = \overbrace{T_{g}e^{p}\gamma_{v}}^{(1)} + \overbrace{T_{c}(1-\omega)(1-\gamma_{v})}^{(2)} + \overbrace{T_{c}(1-\omega)(1-\gamma_{v})r^{p}\gamma}^{(3)}$$

- *e^p*: effective emissivity of soil-snow system
- r^p : effective reflectivity of soil-snow system
- T_g : ground temperature
- T_c : canopy temperature.
- $\gamma_{\rm v}$: vegetation transmissivity.
- $\omega:$ vegetation single scattering albedo.

Kumawat D., M. Olyaei, L. Gao, A. Ebtehaj, Passive Microwave Retrieval of Soil Moisture below Snowpack at L-band using SMAP Observations, IEEE Trans. on Geosci. and Remote Sens., DOI:10.1109/TGRS.2022.3216324.

Soil-Snow-Canopy Radiative Transfer Model in L-band

$$r_{\rm coh}^{p} = \frac{\xi_{\rm cs}^{p} + \tilde{\xi}_{\rm sg}^{p} \, \mathrm{e}^{-2\gamma_{\rm s}}d_{\rm s}\cos\alpha_{\rm s}}{1 + \xi_{\rm cs}^{p} \, \tilde{\xi}_{\rm sg}^{p} \, \mathrm{e}^{-2\gamma_{\rm s}}d_{\rm s}\cos\alpha_{\rm s}}^{2} \text{ and } e_{\rm coh}^{p} = 1 - \frac{\tilde{\xi}_{\rm sg}^{p} + \xi_{\rm cs}^{p} \, \mathrm{e}^{-2\gamma_{\rm s}}d_{\rm s}\cos\alpha_{\rm s}}{1 + \xi_{\rm cs}^{p} \, \tilde{\xi}_{\rm sg}^{p} \, \mathrm{e}^{-2\gamma_{\rm s}}d_{\rm s}\cos\alpha_{\rm s}}^{2},$$

Previous	Research
00000	

SMAP Orbit: 23 Jan 2017

$$\phi^* = \underset{\phi}{\operatorname{argmin}} \sum_{p} \left(\mathbf{y}_{T_B}^p - f^p(\phi) \right)^2 + \mu(\tau - \tau_0)^2$$

 $\text{subject to} \quad \phi_l \leq \phi \leq \phi_u,$

Previous	Research
00000	

VOD retrievals

Previous	Research
00000	

Soil permittivity retrievals

Previous	Research
00000	

Boreal forests with continuous (Region A) and sporadic permafrost (Region B)

$$\phi^* = \underset{\phi}{\operatorname{argmin}} \sum_{p} \left(\mathbf{y}_{T_B}^p - f^p(\phi) \right)^2 + \mu(\tau - \tau_0)^2$$

subject to $\phi_l \leq \phi \leq \phi_u$,

Previous	Research	
00000		

Current Research 000●

Future Research

Retrieval of High-latitude VOD and Ground Permittivity

► FLUXCOM NEE in 01/23/17 and VOD.

A new dataset, all SMAP daily orbits (2015-2020) at https://github.com/aebtehaj/SM-Snow-L-band

Current Research

Future Research

$$Tb_w^p = T_w e_{is}^p \Longrightarrow Tb^p = f_w Tb_w^p + (1 - f_w) Tb_g^p$$

Current Research

Future Research

$$Tb_w^p = T_w e_{is}^p \Longrightarrow Tb^p = f_w Tb_w^p + (1 - f_w) Tb_g^p$$

Future Research

Current Research

Future Research

Current Research

Future Research

Arctic Freeze-Thaw Dynamics

Time

Current Research

Future Research $0 \bullet 0$

Methane Ebullition Flux

Current Research

Future Research

Methane Ebullition Flux

Previous	Research
00000	

- Key ancillary variables that directly inform the RT model (e.g., clay fraction) can improve retrieval resolution.
- Not accounting for the effect of snow will lead to an overestimation of soil relative permittivity and VOD over the Arctic lands.
- Quantify NEE in wintertime when snow and ice cover the ground
- With 10×10 km resolution, we can estimate the ice phenology of Arctic lakes greater than 3×3 km.
- Methane ebullition flux to better understand the contribution of thawing permafrost on global warming.
- ▶ L-band PMW retrieval of active layer ice and carbon content?

Previous	Research
00000	

- Key ancillary variables that directly inform the RT model (e.g., clay fraction) can improve retrieval resolution.
- Not accounting for the effect of snow will lead to an overestimation of soil relative permittivity and VOD over the Arctic lands.
- Quantify NEE in wintertime when snow and ice cover the ground
- With 10×10 km resolution, we can estimate the ice phenology of Arctic lakes greater than 3×3 km.
- Methane ebullition flux to better understand the contribution of thawing permafrost on global warming.
- ▶ L-band PMW retrieval of active layer ice and carbon content?

Current Research

Future Research

- Key ancillary variables that directly inform the RT model (e.g., clay fraction) can improve retrieval resolution.
- Not accounting for the effect of snow will lead to an overestimation of soil relative permittivity and VOD over the Arctic lands.
- ▶ Quantify NEE in wintertime when snow and ice cover the ground
- With 10×10 km resolution, we can estimate the ice phenology of Arctic lakes greater than 3×3 km.
- Methane ebullition flux to better understand the contribution of thawing permafrost on global warming.
- ▶ L-band PMW retrieval of active layer ice and carbon content?

Current Research

Future Research

- Key ancillary variables that directly inform the RT model (e.g., clay fraction) can improve retrieval resolution.
- Not accounting for the effect of snow will lead to an overestimation of soil relative permittivity and VOD over the Arctic lands.
- ▶ Quantify NEE in wintertime when snow and ice cover the ground
- ► With 10×10 km resolution, we can estimate the ice phenology of Arctic lakes greater than 3×3 km.
- Methane ebullition flux to better understand the contribution of thawing permafrost on global warming.
- ▶ L-band PMW retrieval of active layer ice and carbon content?

Current Research

Future Research

- Key ancillary variables that directly inform the RT model (e.g., clay fraction) can improve retrieval resolution.
- Not accounting for the effect of snow will lead to an overestimation of soil relative permittivity and VOD over the Arctic lands.
- ▶ Quantify NEE in wintertime when snow and ice cover the ground
- ► With 10×10 km resolution, we can estimate the ice phenology of Arctic lakes greater than 3×3 km.
- Methane ebullition flux to better understand the contribution of thawing permafrost on global warming.
- ▶ L-band PMW retrieval of active layer ice and carbon content?

Current Research

Future Research

- Key ancillary variables that directly inform the RT model (e.g., clay fraction) can improve retrieval resolution.
- Not accounting for the effect of snow will lead to an overestimation of soil relative permittivity and VOD over the Arctic lands.
- ► Quantify NEE in wintertime when snow and ice cover the ground
- ► With 10×10 km resolution, we can estimate the ice phenology of Arctic lakes greater than 3×3 km.
- Methane ebullition flux to better understand the contribution of thawing permafrost on global warming.
- ► L-band PMW retrieval of active layer ice and carbon content?