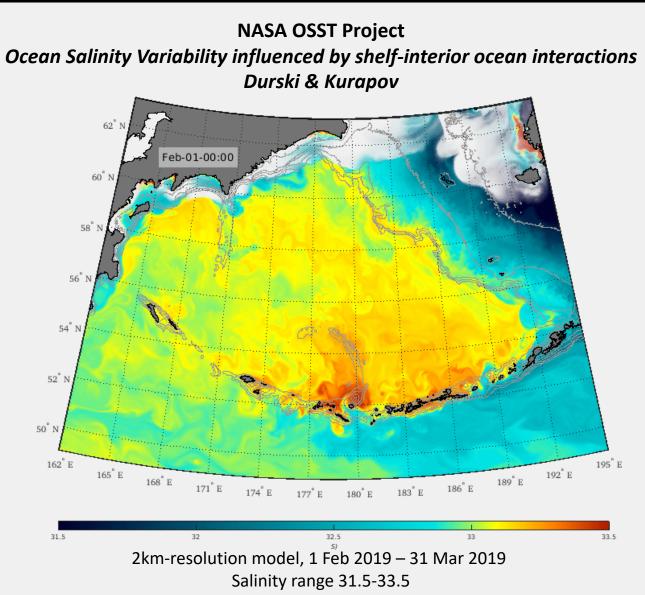
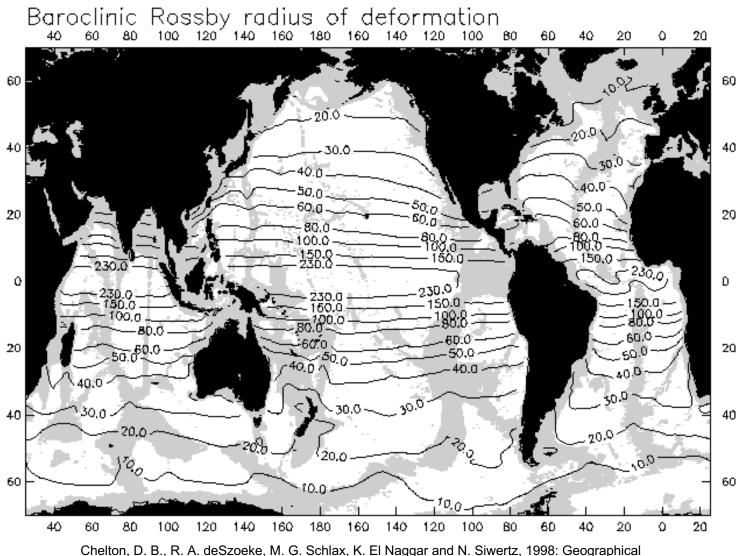

Operational Implications of Higher Resolution Sea Surface Salinity (NOAA)

Eric Bayler

NOAA/NESDIS Center for Satellite Applications and Research


9-12 Oct 2023 NASA/JPL: Science of 10-km Resolution L-band Radiometry

Resolution: Key Enabler



NASA image by Norman Kuring, NASA's Ocean Color Web. Data acquired February 8, 2016

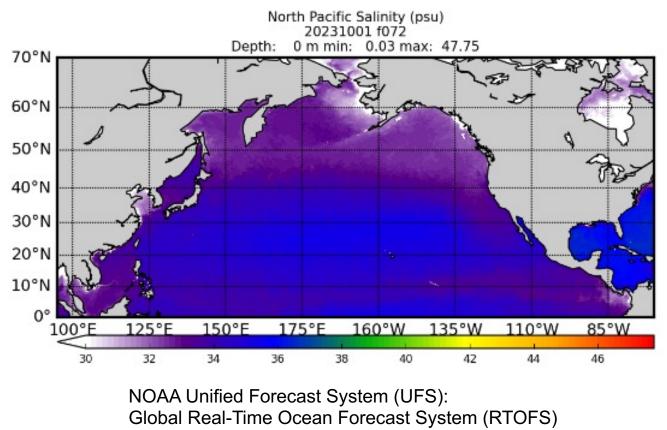
Resolution: Key Enabler

Resolution: Key Enabler

variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433-460.

Rossby Radius of Deformation

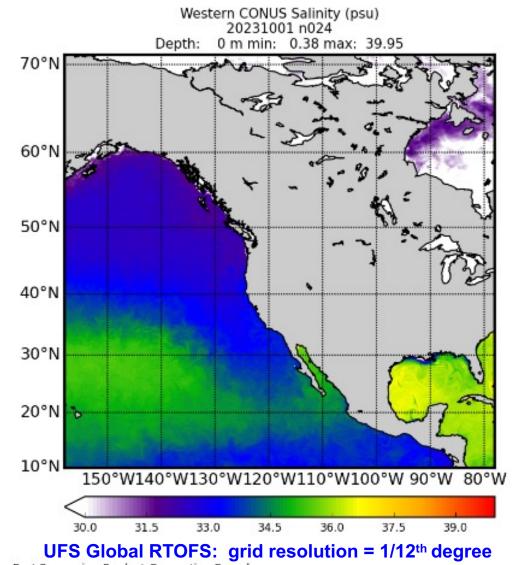
- The length scale at which the geostrophic balance (between the Coriolis and the horizontal pressure gradient forces) will become important.
 - The length scale at which rotational effects become as important as buoyancy or gravity wave effects in the evolution of the flow about some disturbance.
 - Defines the length scale of baroclinic variability longer than which internal vortex stretching is more important than relative vorticity.


NOAA Context

- NOAA's operational Unified Forecast System (UFS)
 - Coupled ocean-atmosphere-sea ice forecast modeling
 - Near-real-time (NRT) and subseasonal-seasonal (S2S) time scales
 - For numerical modeling, refresh needs to be no more than 24 hours for oceanographic applications, ideally less, particularly for regional/coastal models
 - Latency greater than 24 hours negatively impacts utility for data assimilation.
- SSS characterizes water masses
 - Gradients and fronts important
 - Thermohaline stability/dynamics
 - Ecological habitat
- Sea-surface density (SSS + SST) necessary for assessing, representing, and constraining model values:
 - · Heat and moisture fluxes with the atmosphere
 - Thermohaline circulation
 - Near-surface convective mixing
 - Assimilation of satellite altimetry and the projection of values into the modeled ocean interior
 - Ocean heat content \rightarrow Tropical cyclone intensification

Operational Modeling & Prediction: Global

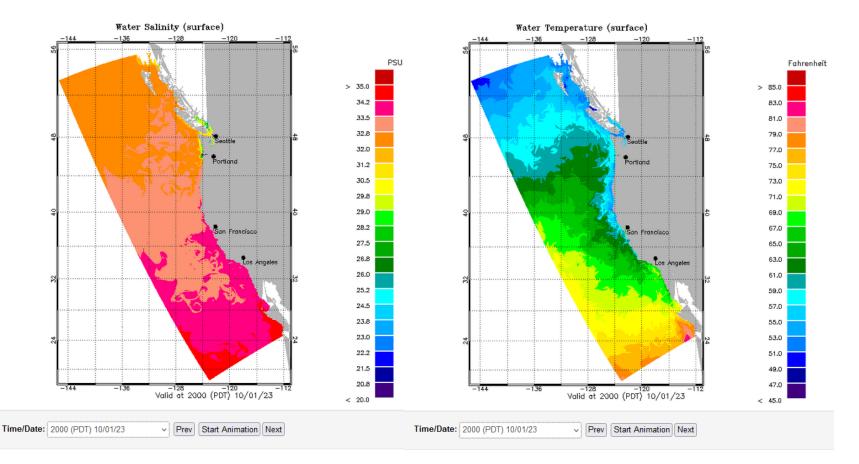
• Grid resolution = 1/12th degree (~ 8 km)


NCEP/EMC/Verification Post Processing Product Generation Branch

02 Oct 2023 on Hera

NASA/JPL: Science of 10-km Resolution L-band Radiometry

Operational Modeling & Prediction: Global



NCEP/EMC/Verification Post Processing Product Generation Branch

02 Oct 2023 on Hera

NASA/JPL: Science of 10-km Resolution L-band Radiometry

Operational Modeling & Prediction: Regional

NOAA West Coast Operational Forecast System (WCOFS)

- Grid resolution: 4 km (~ 1/24th degree)
- Target resolution: 2 km
- In development: East Coast Operational Forecast System (ECOFS)

NOAA Context

- Increased societal use of the Arctic Ocean
 - Critical NOAA missions: environmental prediction and marine navigation
- Cryosphere increasingly important as NOAA completes development and implements an operational coupled ocean-atmosphere-sea ice model (target 2025 Q2)
 - Sea-ice thickness is the most sought observational parameter for data assimilation in NOAA's operational ocean modeling
 - Impacts radiance-based modeling and data assimilation

NOAA Context: High latitudes Increased societal use of the Arctic Ocean

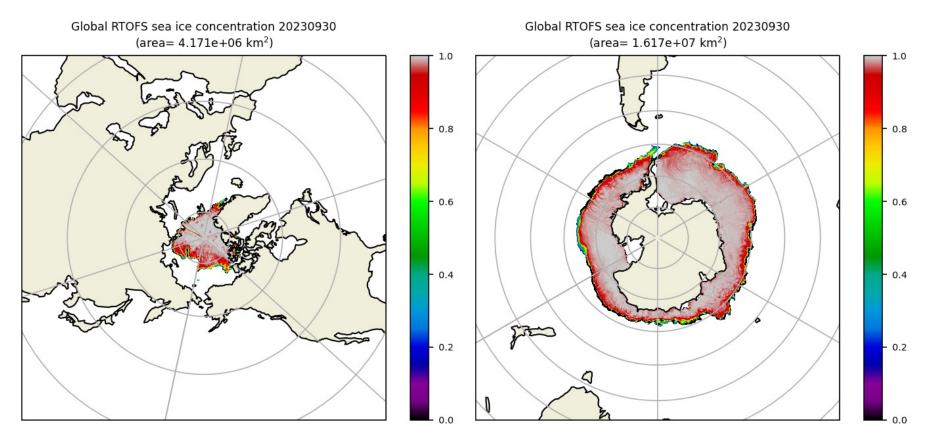
Sea-surface salinity (SSS)

- SSS influences/drives cryospheric processes and resulting impacts on coupled ocean-atmosphere-cryosphere operational modeling.
 - Salinity notably drives the density-driven stratification/circulation, unlike at lower latitudes, where temperature more strongly drives the thermohaline circulation
- Arctic becoming more ice free; consequently, SSS data for the Arctic is critical
 - Ice formation/melt
 - Surface stratification
 - Ocean-atmosphere fluxes (heat, moisture)
- Ecosystem considerations
 - Salinity driven stratification and overturning circulation strongly influences the availability of nutrients, etc.
 - NOAA's Climate-Ecosystems-Fisheries Initiative
 - Arctic domain

- Sea-ice Thickness (SIT)
 - Critical for NOAA's environmental modeling and marine navigation missions.
 - Increasingly important for coupled ocean-atmosphere-sea ice modeling and prediction
 - Dramatically affects the coupling between the ocean and the atmosphere.
 - Sea ice serves as an on-off switch for surface reflectance/absorption
 - Sea-ice thickness observations for NOAA's data assimilation:
 - Initiated providing infrared-based satellite sea-ice thickness (SIT) observations for assimilation – resolution nominally 1 km
 - Altimetry SIT have a minimum-thickness threshold, precluding thin SIT measurements. Expect operational implementation soon.
 - L-band SIT measures thin SIT, providing complementary methodology to IR and altimetry

10-km L-band

- New Capabilities
 - Increased assimilation accuracies, improved model constraints, and reduced uncertainties for NOAA analyses and forecasts
 - Reduce potentially substantial disparities and approximation errors from spatial displacement and resolution.
 - Enhanced resolution of gradients and fronts, important for thermohaline dynamics and ecosystem considerations
 - Improved habitat characterization for NOAA EcoCast and associated fisheries exclusion areas
 - Notably reduce contamination from near-coast and near-ice observations, permitting better representation of coastal processes and modeling
 - Enhanced operational observations for the cryosphere
 - Assessing sea-ice thickness (SIT)
 - Radiative properties impacting measurements and atmospheric response.
 - Enhanced skill at discerning ocean, atmosphere, and sea-ice components and examining complex phenomenologies


10-km L-band

Applications

- Modeling and prediction
 - Simultaneous ocean, land, cryosphere, and atmosphere observations directly enable NOAA's operational global coupled Unified Forecast System (UFS).
 - Water cycle observation and modeling
 - Drought, agriculture, energy, fish habitat, ...
 - Enhanced ocean and ecology nowcasts/forecasts.
 - Planetary boundary layer characterization
 - Sea ice
 - Observing and modeling the thickness of sea ice
 - Planetary boundary layer characterization
 - Potential ramifications for mid-latitude weather to subseasonal forecasting.
- Ocean acidification
 - Salinity correlation/dependency
 - Total alkalinity (TA), dissolved inorganic carbon (DIC), partial pressure of CO_2 (pCO₂)
 - CO₂ absorbed at the ocean-atmosphere interface
 - Skin SSS observations important; although, increased accuracy is needed.

Backup

Operational Modeling & Prediction: Regional

Sea-ice thickness (SIT) = most sought observation for high-latitudes

- Arctic basin model resolution: RTOFS <4 km, UFS Coupled Model ~10 km
- Max measurable thickness = f(SSS)
 - Thicker SIT can be measured for fresher sea ice
 - Sea ice formed in nominal open-ocean SSS → max measurable SIT ~ 0.5 m
- Important for radiance-based assimilation

Atmosphere

NOAA Context

- Improved hurricane intensity forecasting, an explicit NOAA priority (2017 Weather Act), directly connects to critical decision-making for public safety, e.g., the timing and extent of evacuation orders.
 - L-band PMW is better able to assess such extreme winds, a critical capability for hurricane intensity forecasting.
 - Operational capability being examined for L-band extreme winds (NASA's SMAP mission and ESA's SMOS mission)

New Capabilities

• Ability to infer peak intensity in tropical cyclones.

Applications

- Extreme wind speeds
- Water cycle
- Planetary boundary layer characterization

Land

NOAA Context

- NOAA's Unified Forecast System (UFS) needs to address land coupling in order to extend forecast skill.
- Critical parameters include surface emissivity, heat flux, and moisture flux.
- Land surface emissivity needed, particularly as it relates to the hydrological cycle (e.g., soil moisture, water vapor, snow cover), and exploiting such measurements for enhanced, insight, assessments, and forecast skill.
- Soil moisture observations have high value for assessments/forecasts for the agriculture and emergency response sectors
- Observations under all-weather conditions needed to support operational assessments/forecasts

New Capabilities

Higher-resolution soil moisture measurements will better align with variability

Applications

• Soil moisture (drought, agriculture, fire risk) assessment