

Science of 10-km Resolution L-band Radiometry Workshop

Meeting Objectives

October 10, 2023

Andreas Colliander

Jet Propulsion Laboratory, California Institute of Technology

Bottom Line Up Front

- 1. The workshop is not about any mission, it is about science
- 2. The main target is the upcoming NASA Decadal Survey
- 3. Deliverable: Workshop summary report with science traceability matrices (everybody invited to contribute)

Why 10 km?

- The current resolution is about 40 km
- We know there are science cases and applications that require much finer resolution
- However, we know that, for example, 100 m resolution with L-band from space is not feasible in the next generation
- What would be feasible next step that would produce significant added science return?
- 10 km has 16x spatial information compared to 40 km
- Does 10 km scale reveal geophysical processes and other benefits not achieved with 40 km?

Objective of the Workshop

- Highlight the science achievable with 10-km daily L-band radiometry
 - ...to raise awareness of the importance of the measurement
 - ...to develop Science Traceability Matrices for different cases to serve as the basis for <u>any</u> future mission design
 - ...to be included in the next decadal survey
- The workshop is more about shaping the future NASA priorities rather than trying to serve the current ones

What We Are Covering

- The invited talks were asked to answer the following questions:
 - Why is this observable important in Earth System?
 - Is there benefit obtaining this observable at 10 km compared to 40 km?
 - How is this observable retrieved from L-band brightness temperature?
 - Can simultaneous higher frequency brightness temperature help?
- Oceanography, Cryosphere, Hydrology, Atmosphere, and Ecology
- This information will be used to build science cases and populate science traceability matrices for different cases and disciplines

Agenda, Day 1

Setting the Stage (Chair: Andreas Colliander)

8:00	Registration	
8:30	Welcome and Introductions	Andreas Colliander
8:50	Meeting Objectives	Andreas Colliander
9:15	Current State of L-band Radiometry	Dara Entekhabi
9:35	Outlook of L-band Radiometry	Andreas Colliander
9:50	ESA User Consultation Study on the Need of L-band Radiometry	Matthias Drusch (remote)
10:10	Break	
10:25	Feasibility of 10-km Resolution L-band radiometry	Andreas Colliander
10:45	Discussion	

Cryosphere: Sea Ice (Chair: Ted Maksym)

11:00	On Sea Ice and Its Importance in the Climate System and Processes	Ted Maksym
	Observable with 10 km L-band Radiometry	
11:30	Sea Ice Thickness Retrieval	Lars Kaleschke (remote)
11:45	Lunch	

Agenda, Day 1 (cont'd)

Cryosphere: Ice Sheets (Chair: Joel Harper)

12:45	Overview of Science Problem, Value of Liquid Water Retrieval, and	Joel Harper
	Treatment of Spatial Scales	
13:25	Ice Sheet LWC Retrieval (L-band and multi-freq.)	Andreas Colliander
13:40	Firn Aquifer Detection and Monitoring (L-band)	Julie Miller
13:55	Ice Sheet Temperature Retrieval	Giovanni Macelloni
		(remote)

Cryosphere: Land Surface and Freeze/Thaw (Chair: Alexandre Roy)

14:10	Importance of Vegetation Growth Processes and Methane Release	Alexandre Roy
	to Earth System and Linkage of F/T Spatial Scales to the Processes	
14:50	Break	
15:05	Retrieval of F/T with L-band Radiometry	Xiaolan Xu
15:25	Enhancement with C- to Ka-band Radiometry	John Kimball

Atmosphere: Convective Initiation (Chair: Steven Quiring)

15:40	Significance of Convective Processes in INCUS	Kristen Rasmussen
16:00	Soil Moisture-Precipitation Interactions in the Central United States	Trent Ford
16:20	Investigating Spatial Relationships Between Soil Moisture and	Jana Houser
	Tornado Events using SMAP	
17:00	Adjourn Day 1	

Agenda, Day 2

Oceanography (Chair: Severine Fournier/Tony Lee)

8:00	Preparation for day 2	
8:30	Operational Implications of Higher Resolution Sea Surface Salinity	Eric Bayler
	(NOAA)	(remote)
8:45	Sea Surface Salinity and Open Ocean Processes	Fred Bingham
9:00	Sea Surface Salinity and Coastal Processes	Doug Vandemark
9:15	Sea Surface Salinity and Polar Processes	Julian Schanze
9:30	Air/Sea Fluxes and Impact of Sea Surface Salinity at Small Scales	Lisan Yu
9:45	SSS Retrieval with 1.4 GHz and Wide-Band Measurements	Sidharth Misra
10:00	SSS Enhancement with C- to Ka-band Radiometer Measurements	Alex Akins
10:15	Break	

Hydrology: Water and Energy Cycle (Chair: Dara Entekhabi/Wade Crow)

10:45	Soil Moisture and Land-Atmosphere Coupling with Higher	Josh Roundy
	Resolution Soil Moisture	
11:00	Soil Moisture Heterogeneity and Triggering of Atmospheric	Paul Dirmeyer
	Convection	(remote)
11:15	Global Estimates of L-band Vegetation Optical Depth and Soil	Ardeshir Ebtehaj
	Permittivity over Snow-covered Boreal Forests and Permafrost	
	using SMAP Satellite	

Jet Propulsion Laboratory California Institute of Technology

Agenda, Day 2 (cont'd)

Hydrology: Land Surface Models (Chair: Wade Crow)

11:30	Issues and Challenges in Soil Moisture Data Assimilation	Sujay Kumar
		(remote)
11:45	NWP/Hydrologic Forecasting Implications	Stephane Belair
		(remote)
12:00	Issues In Soil Moisture Assimilation with LSM	Wade Crow
12:15	Lunch	

Hydrology: Soil Moisture Applications and Retrieval (Chair: Thomas Holmes)

13:30	Surface Soil Moisture and Plant Water Uptake	Andrew Feldman
		(remote)
13:45	SM Retrieval with L-band Radiometry	Rajat Bindlish
14:00	Multichannel PMW for soil moisture and Evapotranspiration	Thomas Holmes

Breakouts (Chair: Andreas Colliander)

14:15	Organize to Breakouts	
14:30	BREAKOUT 1 (including break)	
16:30	Breakout Summaries	
17:15	Adjourn Day 2	

Agenda, Day 3

Ecology (Chair: John Kimball)

8:00	Preparation for day 3	
8:30	Importance of Biomass and Plant Hydrology to Earth System	Paul Siqueira
9:00	L-band VOD biomass Applications	Maria Piles
		(remote)
9:15	VOD Applications for Plant Hydrology	Alex Konings
9:30	Review of Measuring VOD Dynamics with L through X-band	JP Wigneron
	Radiometry	(remote)
9:45	VOD Linkage to Biomass and Vegetation Water Content over	Brian Hornbuckle
	Croplands	

Breakouts (Chair: Andreas Colliander)

10:00	BREAKOUT 2 (including brake)	
11:15	Breakout Summaries and Inputs to Science Traceability Matrices	
12:00	Closing and Future Activities	
12:30	Adjourn Day 3	

STM							
Science Motivation	Science Goal	Science Objectives	Scientific Measurement Requirements				Mission Requirements
			Physical Parameters	Observables	Requirements	Projected Performance	(Top Level)
· · · · · · · · · · · · · · · · · · ·			PP1	Obs1	R1		MR1
	e and fill up to the	right	PP2	Obs2	R2:		MR2
	<u>METHOD – General:</u> 				R3		MR3
	<u>METHOD – Specific:</u> 				R4		MR4
					R5		
	G2	02	PP3				
	<u>METHOD – General:</u> 	03	PP4				
	<u>METHOD – Specific:</u> 						