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1 Introduction

Flux estimates are subject to several sources of uncertainty, including observational errors,
spatio-temporal representation uncertainty, and model transport error (Engelen et al., 2002).
Some flux solutions attempt to account for these sources in their representation of the poste-
rior uncertainty, but these are not always available and a coherent probabilistic assessment
becomes challenging in the presence of multiple flux estimates with varying assumptions.
The statistical methodology in this work provides a framework for this common situation.

Different flux maps can arise from combinations of multiple categorical factors. In this
work we are particularly interested in flux estimates derived from different inversion systems,
such as those investigated in model intercomparison projects (MIPs) (Thompson et al., 2016;
Gaubert et al., 2019; Crowell et al., 2019). A second factor of interest is the makeup of the
CO2 concentration data used in the inversions. Our effort contrasts inversions that use Level
2 satellite retrievals directly versus inversions that use Level 3 products produced through
data fusion (Nguyen et al., 2017).

Given a set of flux maps obtained under different scenarios, or combinations of these
factors of interest, our goal is to find common features among the scenarios, and to identify
systematic ways or regions in which fluxes from different scenarios differ. Analysis of variance
(ANOVA) is a statistical modeling framework that facilitates the estimation of the common
and factor-specific effects. It further characterizes the magnitude of the differences within
factors relative to the inherent variability within a scenario. Model assumptions dictate
the estimation of this within-scenario variability and will be an additional focus of our
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investigation. ANOVA methodology has been extended to functional data, such as time
series and spatial fields, where it can provide a coherent depiction of space/time patterns
and anomalies due to various factors (Kaufman and Sain, 2010).

2 ANOVA Model for Flux Estimates

Consider a spatial flux field Y`(s) for setting ` over a spatial region, which might be the
entire globe or some focused region, such as the Transcom regions compared in Crowell et al.
(2019).

In a spatial ANOVA approach (Kaufman and Sain, 2010), we assume that the setting is
due to a number of “factors.” For example, consider inversion system i and data source j.
Then, we could assume

Yijk(s) = µ(s) + αi(s) + βj(s) + (αβ)ij(s) + εijk(s), (1)

where µ is the mean field representing spatial features in the common response, αi quantifies
the variation around µ due to the inversion system i, βj quantifies the variation around µ
due to data source j, (αβ)ij is an interaction effect, εijk quantifies the internal variability
within each scenario, and k is the replicate index.

We will make a Gaussian process assumption for each spatial field, whose mean and
covariance functions can account for nonstationarity, if present. We condition on sum-to-
zero constraints to ensure identifiability. For example, if there are are I inversion systems
under consideration, the constraint becomes

I∑
i=1

αi(s) = 0,

for all locations s.
A minimum collection of levels for these two factors is outlined in Table 1. These include

two inversion systems. Additional inversion results from intercomparison projects (Crowell
et al., 2019) could be incorporated into this framework. The levels for the data source factor
include native Level 2 retrievals and fused products.

Table 1: Planned ANOVA comparison factors and corresponding factor levels.

Factor Level
Inversion System, i CMS-Flux (Liu et al., 2014)

PCTM 4D-VAR (Baker et al., 2010)
Data Source, j OCO-2 Level 2 Retrievals

OCO-2 Fused, Gap-Filled
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2.1 Inference

The model is fitted using Markov chain Monte Carlo (MCMC), which produces samples
from the posterior distribution. From these samples, it is straightforward to produce maps
including uncertainties of each of the spatial fields in (1). It is also possible to produce
maps that show how and where different sources of variability contribute to the observed
fluxes. This will allow us to identify regions in which there are systematic differences between
different scenarios. For example, we could compute maps which at each location indicate
the posterior probability that the effect of the inversion system is larger than the internal
variability at that location.

The approach can also be extended to more formal testing by including indicator variables
and computing their posterior probabilities.

2.2 Data

We will have daily, global flux maps for each scenario for a number of years. We will split the
data into 12 subsets by month of the year, and conduct a separate analysis for each month,
but we will have some replicates due to the different years. For a given month and year, we
can either consider the individual days as replicates as well, or we simply average over all
days within that month (i.e., consider monthly averages).

2.3 Computational issues

The considered data will be quite large, which will lead to substantial computational chal-
lenges. For example, when considering data on a global 1 × 1 degree grid, we will have
n ≈ 65,000 grid points or spatial locations. As standard GP calculations scale cubically in
n, approximations will be necessary.

The Vecchia approximation (Vecchia, 1988; Stein et al., 2004; Katzfuss et al., 2017) has
been applied to individual processes and reduces the number of computations to scale linearly
in n. It should also be possible to apply the Vecchia approximation to the more complicated
spatial ANOVA model considered here, although care must be taken due to the sum-to-zero
constraints, which can be met by conditional simulation. If there are only two levels per
factor, we can also easily reparameterize the model to avoid the constraints.

2.4 Additional considerations

In addition to the computational challenges mentioned above, the nature of the outputs from
flux inversion systems lead to some additional practical considerations. For example, flux
estimates from different inversion systems are available at different native spatial resolutions
(Liu et al., 2014; Baker et al., 2010). The ANOVA data model (1) will need to incorporate
an appropriate change of spatial support for each combination of factors.
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3 Simulation study

We will carry out a simulation study to assess the behavior of the methodology in the two-
factor, two-level setup outlined in Table 1. This simulation will serve as a test case for the
implementation of the MCMC for the functional ANOVA model.

4 Currently unused material

If frequentist p-values are required, we can consider spatial multiple testing and enhanced
false discovery rate procedures (Shen et al., 2002; Huang et al., 2019).

Our initial example is representing flux anomalies in time for a single inversion system.
Figure 1 shows flux extimates over land for June 2015 and June 2016. A possible model for
the flux Yi(s) at location s and year i is

Yi(s) = µ(s) + αi(s) + εi(s)

Here we may be interested in estimating locations where the overall time-invariant mean
flux µ(s) is nonzero as well as locations where the annual anomalies αi(s) are nonzero.
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Figure 1: Flux estimates over land for June 2015 (top) and June 2016 (bottom).
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