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CYCLE REMOTE SENSING

INSUMER: PUBLIC COMMUNITY
SBOUNDARY FLOOD MANAGEMENT)

TIMESCALE OF DECISION MAKING
DAYS TO WEEKS
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OUNDARY FLOOD

\NAGEMENT

Source: Transboundary Freshwater Dispute
Database, Oregon State (Credits: Aaron Wolf)
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{E GLOBAL PICTURE

Number of Countries = 145 countries are

Percentage Area

91-99% 39 associated in IRBs
81-90% 11 = Accounts for 40% of total
71-80% 14 land surface.
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Distribution of treaties on transboundary

flood management
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GPM

http://gpm.gsfc.nasa.gov

Expected launch 2014
3 hourly global rainfall
products at 10X10 km scale
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...........

CYCLE REMOTE SENSING
:CAN THEY BE THE ANSWER?

Expected launch— 2020

Q for major rivers every
7-14 days
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Forecasting range using GPM/SWOT > 3
days can potentially improve:
1) Disaster preparedness

2) Short-term agricultural planning.

3) Prevent loss of life/health epidemics CEE
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RNE DISCHARGE ESTIMATION OF
X RIVERS: WILL IT BE REALISTIC?

Calculating A and R from
Bathymetric Cross-sections
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D DISCHARGE ESTIMATION
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Woldemichael, A.T. A.Degu, W. Yigzaw, A.H. Siddique-E-Akbor, IEEE JSTARS (2010).

Hossain et al. 2009 — SWOT Mission Science Document —
“Reservoir, Transboundary Issues and Human Impacts”
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TING VALUE OF SATELLITE
ALTIMETRY
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LITE PRECIPITATION - GPM
TY/LAND COVER/TERRAIN)
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single product
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JTION: HANDS ON CAPACITY
BUILDING ACTIVITIES
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THE CONSUMER ‘FEEDBACK" ON SATELLITE
DISCHARGE ESTIMATION

“The remotely sensed discharge using SRTM data has very high errors even
during dry season. Why bother?

“The method of SRTM based discharge estimation still requires bathymetry
which means you still need to go to the field. So it's not as useful and can not
replace in-situ measurements.”

“We have pressure transducers now that can measure water level every
minute and relay the information real-time. Why bother to use a SWOT mission
that will only cross a river section a few times a week?”

“The scatter in elevation data across a river cross section is too much. What
should be the 'standard' elevation of the water level at a given river cross
section? *“

“Effective use of Landsat data to classify a flooding river of land and water
areas will depend on the unlikely chance of the region being cloud-free during
the Monsoon season.”

@ Tennessee Tech @ﬁﬁ
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CONSUMER ‘FEEDBACK" ON SATELLITE
PRECIPITATION DATA

»>“We find it difficult to locate the URL of the satellite data portals
through regular web search without having advanced knowledge of
sensors/missions and technical terms.”

»Satellite Data Portals need to be optimized in search engines
(Google) [GIOVANNI does not show up in the first 20 hits]”

»“More documentation in the metadata and in the user support
portals/websites/documentation on uncertainty is required.”

»“More documentation in the metadata and in user support on the
data latency of products is required for operational applications.”

»“Guidance on deriving probabilistic analysis/estimation (say for
discharge — 50t and 90" percentile) would be beneficial.”

@ Tennessee Tech @ﬁﬁ
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LIMATE STUDIES

IMER: ENGINEERING COMMUNITY
GE DAMS- DESIGN AND OPERATION)

TIMESCALE OF DECISION MAKING
YEARS TO DECADES
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N AND OPERATION OF
LARGE DAMS

American River — Reduction of design flood
erval for dam from 500 years (in 1955) to 70 years

»Downstream Sacramento -most flood
prone due to reduction in flood recurrence
interval

»US Army Corps of Engineers current
(billion+ dollar) project is to raise dam
height by 7 feet to handle 250 year floods.

»NRC report — Pineapple Express
(Atmospheric Rivers), Rain on snow, Data

Folsom Dam and Folsom Lake »Did the impoundment and land-use/land
cover change play a role on extreme
Tennessee Tech precipitation patterns in the region? CEE.
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ESERVOIRS IN THE WORLD

7000 “irrigtion " Hydrpower Generation
- ® Flood Control m Water supply
B Recreation M other

total capacity (kmi3

FTELEE
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- Developing
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" 100 km® water
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Date of Dam Completion Existing
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Source: ICOLD, GWSP, Biemans et al. 2011
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DER CONTEXT: ANY
ORRELATION?

Cities with 1 million or more population located
within 100 miles of dam
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40% of world’s irrigation,
7% of energy, 20% of
food production from
dams; Irrigation increase:
40Mha (1900) to 215
Mha (2005 A.D)
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D ENGINEERS CARE ABOUT
LIMATE STUDIES?

and operations are ‘one-way’ — possible climate
stematic alterations to flood frequency (for whatever

stationarity of recurrence interval of extreme events
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Dead Pool
@ Requirement under wet-ground conditions M O n t h

4 Requirement under dry-ground conditions

Typical ‘rigid’ rule book for dams
(Oroville Dam — Source: USACE, 1970)
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SIS OF DAMS IN US —
OSPHERIC REANALYSIS
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MECHANISM HYPOTHESIS:
FROM NATURE

| o
PPl Lifting
Typical Lake Breeze Characteristics
- p i Rain shadow area
- to dew point, P s
walervepor . _gill N\ |
eturn flow *\ updreft condenses .~ . | . Descending air warms
SUCII%%%m -— 24 mst >1ms - IIIJJ :I.I -I. E:-'fa adiabatically :
A - j :_L_. Vi
- _ f;%r;tgl Fr_._;{ln._.-"f? Ay \
{{ susidence € inversion . — o 12 km [ '-=’ij__,._._._-_-,_._-————ia—-— i, ST IR
—t————— wide
inflow  —-
lajer == 47ms’ ED:
N 300.1000mj
g N L N, o T T 1 T S
Wkm 20 10 0 10 20 0 40km Feedback Mechanism between
= ' —u Lake/Wetlands and Rainfall
| ake Breeze Effect [Niger Inner Delta - +ve feedback
Source: Fang Zhang -UGA Taylor (2010) — Geophysical
Research Letters]
Tennessee Tech CEE

UNIVERSITY



PHIC RAIN POSITIVE (DORP)
BACK HYPOTHESIS
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ODELING OF STORM EVENTS
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N PARAMETER: PROBABLE
IMUM PRECIPITATION

orld Meteorological Organization (WMO,

 defined as ‘the greatest depth of precipitation

uration meteorologically possible at a particular
d at a particular time of year’.

W = precipitable water

Wp (maximum) in the atmosphere,
PMP=P X Wmax = maximum
/ wp (Storm) precipitable water
estimated from the
/ maximum daily dew
Currently determined from pre-dam records POINt temperature
records.

Tennessee Tech
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PMP SCENARIOS

Run Type Maximum 72-hr Difference from Percent
(LULC change basin-averaged control (mm) | increase/decrease
scenarios) precipitation (mm) from control
Control 353.93 - -
Reservoir-double 357.84 -3.91 1.105% increase
Non-irrigation 343.51 10.42 2.94% decrease
Pre-dam 346.20 7.73 2.18%decrease

124% 125.3% 123 122534 12 121.5W 121w 12005 120 115.5W 113w 118.54 118%
—
o a0

GeAD: COLAIBES

—44] —3d -2 —-1a o

Tennessee Tech Woldemichael et al. 2012, Impact of Land use/land cover ((j;

UNIVERSITY
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change on PMP, Wat Res. Research

Surface area of reservoir plays a
marginal role in intensifying design
precipitation. Irrigation is the most
dominant player with perhaps
Sacramento expansion playing a
secondary role.
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M Miles —— American River

i | American River Watershed

Yigzaw et al.(2012) Impact of Artificial Reservoir Size and
Land Use/Land Cover Patterns on Estimation of Probable
Maximum Flood: The Case of Folsom Dam on American
River, ASCE J. Hydrologic Engineering.
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LE MAXIMUM FLOOD (PMF)
SIMULATION

Variable Infiltration Capacity -3L
Hydrologic Model
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BLE MAXIMUM FLOOD (PMF)
SIMULATION

w to reservoir (m3/s)
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NT STATE OF ‘INERTIA" IN CIVIL
NGINEERING COMMUNITY

------------------------------- SOME OF THE FEEDBACK:

______________________________ 1. “Freeboard’ and factors of safety
adequate for any future contingency.

2. Sedimentation/loss of storage is
minimal in most regions.

3. It's just a structure, how can it
Impact local climate extremes by

Top-down approach . itself?

4. GCM-based Climate-change
Projection driven top-down
adaptation/analysis should take care

' of mesoclimate impacts by default.
iy ~®® B, This is tree-hugger hysteria not
----------------- e appropriate for countries that need
ndcalors base on to develop rapidly
e Taken from Central Valley Flood
Bottom-up approach Management Planning Program

w Tennessee Tech Report (2012) @Eﬁ

Dead Pool

World de\flopment
Global greenhouse gases

Global climate models

Climate

Economic resources Technology
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SUMMARY OF KEY ISSUES

»Inertia In accepting new ideas/approaches or technology - driven
by skepticism, lack of (mutual) understanding of other’s practice and
lack of hands-on education on ‘pros’ and ‘cons’.

» Institutional success of satellite based flood forecasting will
depend on: a) better ownership of technology transfer b) more
education on the limits of use c) understanding the cultural/social
background of public users.

» Institutional success of climate studies for design and operation of
dams will depend on: a) co-design of experiments with engineering
community feedback b) more education/outreach c) tweaking of B.S
curriculum (engineering) — General Education requirement

=

ASCE J. Hydrologic Engg — Forum Atrticle, 2012

emissions

e.g. urban heat,
white roofs, wind
power, dams

. Tennessee Tech
UNIVERSITY




A WAY FORWARD

n Education Effort involving (active learning) of
co keholders)

» Co-design of Research Experiments with input from consumers.
» \Working with Philanthropic Institutions: Broaden the value of
water cycle satellites (beyond water — health, food, poverty) to
Increase appeal to non traditional consumers.

»|s It possible to make massive amounts of satellite water data
freely accessible on a daily basis to people around the world
(much like Google Earth —intuitive
design)?

» Search Engine Optimization —
Simple Issue involving social
science (but can reach out to
millions of web users)

[ Tennessee Tech Hossain et al., 2011,— Making tce,,,%- _________________________ ;;‘;";’;" .
UNIVERSITY sense of our water in future, EQS i, '
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me and | forget.
h me and | remember.
- Involve me and | learn.

Benjamin Franklin
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SOME OF THE REBUTTALS

SWOT elevations will be well over an order of magnitude more
accurate than SRTM. With adequate QA/QC and data
assimilation/model calibration, estimation uncertainty can be minimized.

SWOT Is not a gauge replacement mission. SWOT provides knowledge
where there are no gauges. For rigid bed and single channel rivers,
bathymetry is a ‘one-time’ requirement. For loose boundary and braided
rivers annual bathymetry sampling is adequate. Hence, in-situ
bathymetry is needed occasionally depending on the nature of the river
system.

Pressure transducers are very expensive and have their own sources
of errors and sampling challenges. (Theft or washout is a big problem!)

For rigid bed single channel rivers, the land/water mask is not a critical
Issue. For braided rivers with large flood plains, alternative schemes
and data sources are available (RADARSAT; Bayesian modeling of
land/water areas, data assimilation etc.)

@ Tennessee Tech @ﬁﬁ
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Bottom-up — more recent

Top-down approach

World devgl t Global )
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Global greenhouse gases yocial
Global climate models ctures &
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Im fcts i A
Climate . L M | )
. 1 oca
_/Vulnerability adaptation '
/... (sogial) policy )CIO-
Adaptive,capacity N\ nomic
_ _ Taken from Central
Indicators base on:

Valley Flood logical
Management Planning —

Program Report (2012)
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Bottom-up approach
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O’Brien et al , 2007: Why different interpretations of
e ech vulnerability matter in climate change discourses.
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